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Introduction

• Output analysis is the examination of data generated by a
simulation.

• Output analysis is needed because the output data from a
stochastic simulation exhibits random variability

• Suppose the true performance of the simulated system is θ.
• The result from a set of simulation runs will be an estimator θ̂.
• The precision of the estimator θ̂ can be measured by the

standard error of θ̂ (i.e., estimator’s standard deviation) or the
width of a confidence interval for θ.

• The purpose of the statistical analysis:
• Estimate the true performance θ.
• Control the estimation precision.

• Types of simulation with regard to output analysis:
• terminating vs. nonterminating.
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Introduction I Types of Simulations

• A terminating simulation is one that runs for some
well-defined time duration TE .
• E is a specified event (or set of events) that stops each

simulation run (replication).
• Simulation starts at time 0 under well-specified initial

conditions, and ends at the stopping time TE .
• TE can be either a deterministic or random variable.

• Example: A bank opens at 9 AM (time 0) with no customers
present and 8 of the 11 tellers working (initial conditions), and
closes at 5 PM (time TE = 8 hours).
• E = {8 hours of simulated time have elapsed}.

• It actually stops service when the last customer who entered
before 5 PM has been served.
• E = {at least 8 hours of simulated time have elapsed and the

system is empty} ⇒ TE is a random variable.
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Introduction I Types of Simulations

• A nonterminating simulation is one that runs continuously
and without a natural event E to stop the simulation run.
• Initial conditions are defined by the analyst, but its effect fades

away as simulation time increases.
• Stopping time is conceptually infinite, and in practice it is

determined by the analyst with certain statistical precision.

• Examples: Production line that runs 24/7, hospital emergency
rooms, continuously operating computer networks, etc.

• For a simulation model that is run in a nonterminating way
and has a steady-state (stationary) distribution:
• The objective is often to study the long-run, or steady-state,

behavior of a system, which is not influenced by the initial
conditions.

• Such nonterminating simulation is also called steady-state
simulation.
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Point and Interval Estimations I Basics

• Suppose we want to estimate θ = E[X] based on the iid
sample {X1, . . . , Xn}.

• The point estimator (a single variable) is

θ̂ = X̄ =
1

n

n∑

i=1

Xi.

• How good is this estimator?
• Unbiased: E[θ̂] = θ.
• Consistent: θ̂ → θ almost surely as n→∞.†

• Point estimator says nothing about the estimation error for
finite sample size n.
• Small estimation error means high estimation precision.

†
Assume E[|X|] <∞, or σ2 <∞.
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Point and Interval Estimations I Basics

• If X ∼ N (θ, σ2), then

√
n
( θ̂ − θ

σ

)
∼ N (0, 1).

• If X follows arbitrary distribution and σ2 = Var(X) ∈ (0,∞),
then by Central Limit Theorem,

√
n
(
θ̂ − θ
σ

)
⇒ N (0, 1), as n→∞. (1)

•
√
n
(
θ̂−θ
σ

)
∼ N (0, 1) approximately when n is large.

• σ2 is typically unknown, and we substitute it by the sample
variance

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.
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Point and Interval Estimations I Basics

• If X ∼ N (θ, σ2), then

√
n
(
θ̂ − θ
S

)
∼ tn−1, (2)

where tp denotes t distribution with p degrees of freedom.

• If X follows arbitrary distribution and σ2 = Var(X) ∈ (0,∞),
then by Equation (1) and the fact that σ

S → 1 almost surely
as n→∞,

√
n
(
θ̂ − θ
S

)
⇒ N (0, 1), as n→∞. (3)

•
√
n
(
θ̂−θ
S

)
∼ N (0, 1) approximately when n is large.

• Results (2) and (3) are the basis of the confidence interval
estimation for θ.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 6 Fall 2019 7 / 42

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Point and Interval Estimations I Basics

• If X ∼ N (θ, σ2), where θ and σ are unknown, then a 1− α
confidence interval (CI) for θ is

[
θ̂ − tn−1,1−α/2

S√
n
, θ̂ + tn−1,1−α/2

S√
n

]
, (4)

where tn−1,1−α/2 is the (1− α/2)-quantile of tn−1 dist.

Proof.

P
{
θ ∈

[
θ̂ − tn−1,1−α/2S/

√
n, θ̂ + tn−1,1−α/2S/

√
n
]}

=P
{
|θ − θ̂| ≤ tn−1,1−α/2S/

√
n
}

=P
{∣∣∣ θ − θ̂
S/
√
n

∣∣∣ ≤ tn−1,1−α/2

}
= 1− α,

where the last equality is due to (2) and the symmetry of t distribution. �
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Point and Interval Estimations I Basics

• The interpretation of CI:

• If one constructs a very large number of independent 1− α
CIs, each based on n observations, the proportion of CIs that
actually contain (cover) θ should be 1− α.

θ

Law01323_ch04_214-245.indd Page 235  28/10/13  9:29 PM user-f-w-198 Law01323_ch04_214-245.indd Page 235  28/10/13  9:29 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles

• Caution: There is nothing probabilistic about a single CI after
the data have been observed and the interval’s endpoints have
been given numerical values, e.g., [1.1, 2.4].

• Try it out! http://www.rossmanchance.com/applets/ConfSim.html
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Point and Interval Estimations I Basics

• If X follows arbitrary distribution, θ and σ2 = Var(X) are
unknown, and 0 < σ2 <∞, then an approximate 1− α CI for
θ with large n is

[
θ̂ − z1−α/2

S√
n
, θ̂ + z1−α/2

S√
n

]
, (5)

where z1−α/2 is the (1− α/2)-quantile of N (0, 1).

• The proof is similar as before by using (3), instead of (2).

• The interpretation is the same as before.

• In practice, people also use (4) as approximate CI even when
X does not follow a normal distribution.
• Both (4) and (5) are approximation for finite n when X is

non-normal.
• tn−1,1−α/2 > z1−α/2, so CI (4) will be wider than CI (5).

• CI (4) generally has coverage closer to the desired level 1− α.
• tn−1,1−α/2 → z1−α/2 as n→∞.
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Point and Interval Estimations I Specified Precision

• For CI (4), the half-length under 1− α confidence level is

H = tn−1,1−α/2
S√
n
.

• For CI (5), the half-length under 1− α confidence level is

H = z1−α/2
S√
n
.

• Half-length H presents the precision (or error) of the
estimation for θ.

• We want H to be small enough for our decision making, say,
H ≤ ε, under 1− α confidence level.
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Point and Interval Estimations I Specified Precision

• Usually we take an initial sample of size n0 to get an estimate
of σ2, say S2

0 .
• Assume that the estimate of σ2 will not change (appreciably)

from S2
0 as the sample size increases.

• For CI (4), an approximate expression for the total sample size
required to make H ≤ ε is given by

n∗ = min

{
n ≥ n0 : tn−1,1−α/2

S0√
n
≤ ε
}
.

• For CI (5), an approximate expression is given by

n∗ = min

{
n ≥ n0 : z1−α/2

S0√
n
≤ ε
}

=

⌈(z1−α/2S0

ε

)2⌉
. (6)

• For simplicity, people sometimes use (6), regardless of the
distribution of X.

• Take n∗ − n0 additional sample points, or start over and take
a sample of size n∗, to form the 1− α CI (with new S).
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Point and Interval Estimations I Example

• Suppose an iid sample is taken and the values are as follows:
79.919 3.081 0.062 1.961 5.845

3.027 6.505 0.021 0.013 0.123
6.769 59.899 1.192 34.760 5.009

18.387 0.141 43.565 24.420 0.433
144.695 2.663 17.967 0.091 9.003

0.941 0.878 3.371 2.157 7.579
0.624 5.380 3.148 7.078 23.960
0.590 1.928 0.300 0.002 0.543
7.004 31.764 1.005 1.147 0.219
3.217 14.382 1.008 2.336 4.562

79.919 3.081 0.062 1.961 5.845
3.027 6.505 0.021 0.013 0.123
6.769 59.899 1.192 34.760 5.009

18.387 0.141 43.565 24.420 0.433
144.695 2.663 17.967 0.091 9.003

0.941 0.878 3.371 2.157 7.579
0.624 5.380 3.148 7.078 23.960
0.590 1.928 0.300 0.002 0.543
7.004 31.764 1.005 1.147 0.219
3.217 14.382 1.008 2.336 4.562

• Construct a 95% CI and a 99% CI for θ = E[X].

n = 50, θ̂ = X̄ = 11.894, S = 24.953. We use CI (4) and get
t49,0.975 = 2.010, t49,0.995 = 2.680. Then,

95% CI: 11.894± 2.010× 24.953√
50

= 11.894± 7.093 = [4.801, 18.987];

99% CI: 11.894± 2.680× 24.953√
50

= 11.894± 9.457 = [2.437, 21.351].

• Want to make half-length H ≤ 2 under 95% confidence level.

We use (6) and get z0.975 = 1.960, S0 = S = 24.953, ε = 2. Then,

n∗ =

⌈(
1.960×24.953

2

)2⌉
= d597.995e = 598.

Take 598− 50 = 548 additional sample points.
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Terminating Simulation

• A terminating simulation runs over the time interval [0, TE ]
and produce observations (outputs).

• Discrete outputs: {Y1, Y2, . . . , Yn}.
• n may be deterministic or random depending on how TE is

specified.
• E.g., waiting time of all customers.
• A common goal is to estimate θ := E[ 1n

∑n
i=1 Yi], e.g., the

expectation of the average waiting time.

• Continuous outputs: {Y (t) : 0 ≤ t ≤ TE}.
• TE may be deterministic or random.
• E.g., number of customer in the waiting line at time t,

0 ≤ t ≤ TE .
• A common goal is to estimate θ := E

[
1
TE

∫ TE

0
Y (t)dt

]
, e.g.,

the expectation of the average waiting line length.

• In general, independent replications (runs) are used, each with
a different random number stream.
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Terminating Simulation I Discrete Outputs

• Within-replication data vs. across-replication data:

Replication Within-Rep Data Across-Rep Data

1 Y11, Y12, . . . , Y1n1
Ȳ1 = 1

n1

∑n1

i=1 Y1i

2 Y21, Y22, . . . , Y2n2
Ȳ2 = 1

n2

∑n2

i=1 Y2i
...

...
...

R YR1, YR2, . . . , YRnR ȲR = 1
nR

∑nR
i=1 YRi

• Across-rep data are independent and identically distributed,
when same initial conditions and different random number
streams are used.

• Within-rep data are typically neither independent nor
identically distributed:
• waiting times of successive customers are heavily correlated;
• waiting times during the peak hours are longer than off-peak

hours, so they’re not identically distributed.

• Use across-rep data to do point/interval estimation!
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Terminating Simulation I Discrete Outputs

• Example: What is the expectation of average waiting time for
customers during [0, TE ]?
• Use {Ȳ1, . . . , ȲR} as an iid sample of size R.

• Point estimator:

Ȳ =
1

R

R∑

r=1

Ȳr.

• 1− α CI using (4):
[
Ȳ − tR−1,1−α/2

S√
R
, Ȳ + tR−1,1−α/2

S√
R

]
,

where S2 = 1
R−1

∑R
r=1(Ȳr − Ȳ )2.

• Necessary number of replications for specified precision H ≤ ε
under 1− α confidence level using (6).
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Terminating Simulation I Continuous Outputs

• Within-replication data vs. across-replication data:

Replication Within-Rep Data Across-Rep Data

1 {Y1(t) : 0 ≤ t ≤ TE1
} Ỹ1 = 1

TE1

∫ TE1

0
Y1(t)dt

2 {Y2(t) : 0 ≤ t ≤ TE2
} Ỹ2 = 1

TE2

∫ TE2

0
Y2(t)dt

...
...

...

R {YR(t) : 0 ≤ t ≤ TER
} ỸR = 1

TER

∫ TER

0
YR(t)dt

• Across-rep data are independent and identically distributed,
when same initial conditions and different random number
streams are used.

• Example: What is the expectation of the average waiting line
length during [0, TE ]?
• Use {Ỹ1, . . . , ỸR} as an iid sample of size R, and the rest is

similar as before.
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Steady-State Simulation

• Consider a single run of a simulation model whose purpose is
to estimate a steady-state, or long-run, performance measure
of the system.
• Theoretically speaking, such steady-state performance measure

has nothing to do with initial conditions.

• Discrete outputs: {Y1, Y2, . . .}.
• A common goal is to estimate φ := limn→∞ 1

n

∑n
i=1 Yi.

• Continuous outputs: {Y (t) : t ≥ 0}.
• A common goal is to estimate φ := limTE→∞

1
TE

∫ TE

0
Y (t)dt.

• However, we cannot simulate a system “to infinity” but must
stop somewhere.
• The simulation run length (n or TE) is a design choice instead

of inherently determined by the nature of the problem.
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Steady-State Simulation

• The run length in steady-state simulation needs to be carefully
chosen, with several considerations:

• bias that is due to artificial or arbitrary initial conditions;
– can be severe if run length is too short

– generally decreases as run length increases

• the desired precision of the point estimator;
– measured by the standard error (i.e., estimator’s standard

deviation) or confidence interval half-width

• budget constraints on the time available to execute the
simulation.
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Steady-State Simulation I Initialization Bias

• The effect of the initial condition is persistent and typically
does not vanish after a finite time.
• Unless the initial condition is specified as the “stationary

distribution” of the system, which is unknown in general.

• Fact 1: Estimators based on a finite-time simulation (finite n
or TE) are biased:

E
[

1

n

n∑

i=1

Yi

]
6= φ, E

[
1

TE

∫ TE

0

Y (t)dt

]
6= φ.

• Fact 2: The bias cannot be replicated away:

lim
R→∞

1

R

R∑

r=1

Ȳr 6= φ, lim
R→∞

1

R

R∑

r=1

Ỹr 6= φ.

• With more replications, we get a more “precise” estimate of
an incorrect value.
• The confidence interval is narrower but it is centered at an

incorrect position.
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Steady-State Simulation I Initialization Bias

• Example of M/M/1 queue: https://xiaoweiz.shinyapps.io/MM1queue

• If λ < µ, the system is stable and the steady-state
expectation (or long-run average) of waiting time is

lim
n→∞

1

n

n∑

i=1

Yi =
λ/µ

µ− λ
.

• Choosing different initial conditions (in this example, number
of customers in station, also known as initial state) gives
different looks of sample paths (over finite time period).

• Methods to reduce initialization bias:
• intelligent initialization;
• warm-up period deletion;
• low-bias estimator (advanced topic).
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Steady-State Simulation I Intelligent Initialization

• Initialize the simulation in a state that is more representative
of long-run conditions.

• If the system exists, collect data on it and use these data to
specify more nearly typical initial conditions:
• fit a probability distribution to describe the initial state;
• or, simply use the sample mean as a representative.

• If the system can be simplified enough to make it analytically
solvable, e.g. queueing models, use the theoretical solution to
initialize the simulation.
• Solve the simplified model to find the stationary distribution or

most likely conditions (e.g., the expected number of customers
in a station).

• This is another important value of those analytically solvable
queueing models.
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Steady-State Simulation I Warm-up Period Deletion

• The impact of the initial condition gradually vanishes as the
run length increases.

• So we divide a simulation run into two periods:
• warm-up period: from time 0 to time T0;
• data-collection period: from time T0 to TE .

0 T0

T0 -

 TE

Specified initial
conditions

I0

“Steady-state” initial
conditions

I

Data-collection period
of length TE

Warm-up period
of length T0

Figure: Warm-up Period Deletion (from Banks et al. (2010) )

• T0 should be sufficiently large so that at time T0 the impact
of the initial condition is very weak and the system behaves
approximately as in the steady state.

SHEN Haihui MG26018 Simulation Modeling and Analysis, Lec 6 Fall 2019 23 / 42

https://shenhaihui.github.io/teaching/mg26018/CC_BY-SA_4.0_License.html
https://www.pearson.com/us/higher-education/program/Banks-Discrete-Event-System-Simulation-5th-Edition/PGM130682.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Steady-State Simulation I Warm-up Period Deletion

• To determine T0
• There are no widely accepted and proven techniques.
• Plots are often used.

• The raw output data plot from a single simulation run is
usually too variable to detect the trend. – not helpful

• Instead of directly plotting raw output data, we usually use
some smoother plots to see when the curve “stabilizes”:
• cumulative average (累积均值); – OK
• ensemble average (总体均值). – recommended
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Steady-State Simulation I Warm-up Period Deletion
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Figure: Raw Output of Waiting Time of Each Customer in M/M/1
Queue with λ = 0.962 and µ = 1 (from ZHANG Xiaowei )
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Steady-State Simulation I Warm-up Period Deletion

• Cumulative average (累积均值): For one replication, say,
replication 1, plot the average from time 0 up to now.

• Discrete outputs: Plot Ȳ1(n) = 1
n

∑n
i=1 Y1i with respect to n;

• Continuous outputs: Plot Ỹ1(T ) = 1
T

∫ T
0
Y1(t)dt with respect

to T .

• It can be plotted for each replication, so we usually detect
different warm-up period durations from different replications.

• The cumulative plot is usually conservative, i.e., the warm-up
period it detects is longer than necessary.
• It retains all of the data including the warm-up period, so the

bias needs more time to diminish.
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Steady-State Simulation I Warm-up Period Deletion
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Figure: Cumulative Average Waiting Time of Customers in M/M/1
Queue with λ = 0.962 and µ = 1 (from ZHANG Xiaowei )
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Steady-State Simulation I Warm-up Period Deletion

• Ensemble average (总体均值): For multiple replications 1, . . . ,
R, compute the average across replications and make the plot.

• Discrete outputs: Plot Ȳ (n) = 1
R

∑R
r=1 Ynr with respect to n;

• Continuous outputs: Divide the raw data of replication r into
small batches, e.g., {Yr(t) : (j− 1)m ≤ t < jm}, j = 1, 2, . . .;

plot Ỹ (j) = 1
R

∑R
r=1

[
1
m

∫ jm
(j−1)m Yr(t)dt

]
with respect to j.

• We detect one warm-up period duration for multiple
replications.

• Some variations are smoothed out by averaging across
multiple replications.
• This leads to more accurate detection of warm-up period.
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Steady-State Simulation I Warm-up Period Deletion
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Figure: Ensemble Average Waiting Time of n-th Customer in M/M/1
Queue with λ = 0.962 and µ = 1 (from ZHANG Xiaowei )
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Steady-State Simulation I Remarks

• When first starting to detect the warm-up period, a run length
and number of replications will have to be guessed.

• Increase the number of replications if the ensemble averages
are not smooth enough.

• Increase the run length if the ensemble averages do not
stabilize.

• Since each ensemble average is the sample mean of iid
observations across R replications, a confidence interval can
be placed around each point.

• Use them to judge whether or not the plot is precise enough to
decide that the bias has vanished.

• This is the preferred method to determine a deletion point.
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Steady-State Simulation I Remarks
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Figure: Ensemble Average Waiting Time and 95% CI of n-th Customer in
M/M/1 Queue with λ = 0.962 and µ = 1 (from ZHANG Xiaowei )
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Steady-State Simulation I Remarks

• Cumulative averages become less variable as more data are
averaged.

• So the right side of the curve is always smoother than the left
side.

• Cumulative averages tend to converge more slowly to long-run
performance than ensemble averages do.

• Because cumulative averages contain all observations including
the most biased ones from the very beginning.

• Cumulative averages should be used only if ensemble averages
can not be computed, such as when only a single replication is
possible.

• Different performance measures could approach steady state
with different speed.
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Steady-State Simulation I Estimation with Multiple Replications

• Idea: Make multiple replications (long enough), remove
warm-up period for each one, and then work as if we were in a
terminating simulation.

• Caution: Make sure that initialization bias in the point
estimator has been reduced to a negligible level.
• Otherwise the estimation can be misleading.

• Note: Initialization bias is not affected by the number of
replications.
• It is affected by deleting more data (i.e. increasing T0) or

extending the run length (i.e. increasing TE).
• Increasing the number of replications could produce narrower

interval around the “wrong point”.
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Steady-State Simulation I Estimation with Multiple Replications

• Discrete outputs:
• Suppose we decide to delete first d observations of the total n

observations in a replication.†

• The across-replication data from R replications are

Ȳ1 =
1

n− d

n∑

i=d+1

Y1i , . . . , ȲR =
1

n− d

n∑

i=d+1

YRi.

• Continuous outputs:
• Suppose we decide to delete data in [0, T0] period and only use

those in [T0, TE ] in a replication.
• The across-replication data from R replications are

Ỹ1 =
1

TE − T0

∫ TE

T0

Y1(t)dt , . . . , ỸR =
1

TE − T0

∫ TE

T0

YR(t)dt.

†
d and n may vary between different replications, in which case they are replaced by dr and nr, respectively.
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Steady-State Simulation I Estimation with Multiple Replications

• Similar as in terminating simulation, the across-replication
data are iid.
• So we can use them to compute the point estimator, CI, and

necessary number of replications for specified precision, in the
same way as before.

• Unlike terminating simulation, the above mentioned
estimators are biased for finite n or TE .
• The bias is negligible if d and n, or T0 and TE , are sufficiently

large.

• A rough rule for relationship between d and n, or T0 and TE :

(n− d) ≥ 10d, (TE − T0) ≥ 10T0.
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Steady-State Simulation I Estimation with Multiple Replications

• Suppose analysis indicates that R−R0 additional replications
are needed after the initial number R0, in order to meet the
desired precision.

• An alternative to increasing replications is to increase run
length TE within each replication.

• Increase run length TE in the same proportion (R/R0) to a
new run length (R/R0)TE .

• More data will be deleted, from time 0 to time (R/R0)T0.

• More data will be used to compute the estimate, from time
(R/R0)T0 to time (R/R0)TE .

• The total amount of simulation effort is the same as if we had
simply increased the number of replications.
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Steady-State Simulation I Estimation with Multiple Replications
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Figure: Increasing Run Length to Achieve Specified Precision (from Banks et al. (2010) )

• Advantage: Any residual bias in the point estimator would be
further reduced.

• Disadvantage: It is necessary to have saved the state of the
model at time TE and to be able to continue the running.
• Otherwise, the simulations would have to be re-run from time

0, which could be time consuming for a complex model.
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Steady-State Simulation I Estimation with Single Replication

• A disadvantage of the replication method is that the warm-up
period must be deleted on each replication.
• This can become very costly in terms of computation time

especially when the model warms up very slowly.
– E.g., M/M/1 queue with utilization close to 1.

• This suggests that we could use one single, (very) long
replication for estimation, so that only one warm-up period is
deleted.

• Besides, it is also possible that we are in a situation where
only the data from one long replication are available.
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Steady-State Simulation I Estimation with Single Replication

• Point estimator: Sample mean after the warm-up period
deletion

Ȳ =
1

n− d

n∑

i=d+1

Yi, Ỹ =
1

TE − T0

∫ TE

T0

Y (t)dt.

• The disadvantage of the single-replication design arises when
we try to estimate the variance of the above estimators,
because of
• the strong but unknown dependence among Y1, Y2, . . . , Yn;
• the non-identical distribution of Y1, Y2, . . . , Yn;
• and the integral form of Ỹ .
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Steady-State Simulation I Estimation with Single Replication

• Caution: It is tempting to compute

S2 =
1

n− d− 1

n∑

i=d+1

(Yi − Ȳ )2,

and use S2/(n− d) to estimate Var(Ȳ ). However, such
estimation will be terrible, since Y1, Y2, . . . , Yn are neither
independent nor identically distributed.

• The CI based on S2/(n− d) would also be misleading.

• Example: Suppose Yd+1, . . . , Yn are identically distributed but
positive correlated (which is common for waiting time), then

E[S2/(n− d)] < Var(Ȳ ).

• The constructed CI using S2/(n− d) will be narrower than the
actual valid one.
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Steady-State Simulation I Estimation with Single Replication

• Batch Means (批均值) Method:
• Divide the output data from one replication (after deleting

warm-up period) into a few large batches, and compute the
bath means.

• Discrete outputs: Ȳj = 1
m

∑jm
i=(j−1)m+1 Yi+d, j = 1, 2, ....

Y1, . . . , Yd| {z }
deleted

, Yd+1, . . . , Yd+m| {z }, Yd+m+1, . . . , Yd+2m| {z }, . . . , Yd+(k�1)m+1, . . . , Yd+km| {z }
Batch 1:  Ȳ1 Batch 2:  Ȳ2 Batch k:  Ȳk

• Continuous outputs: Ỹj = 1
m

∫ jm
(j−1)m Y (t+ T0)dt, j = 1, 2, ....

• Treat the means of these batches as if they were independent.

• Why it works?
• The correlation between two observations decreases as they are

farther apart.

• If the batch size is sufficiently large,
– most of the observations in a batch will be approximately independent
of those in other batches;
– only those near the end of the batches are significantly correlated.
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Steady-State Simulation I Estimation with Single Replication

• Strictly speaking, the batch means are not independent.

• However, if the batch size is sufficiently large, successive
batch means will be approximately independent.

• Unfortunately, there is no widely accepted and relatively
simple method for choosing an acceptable batch size m (or
equivalently, choosing a number of batches k).

• Some general guidelines:
• In most applications, it is suggested to let 10 ≤ k ≤ 30,

according to Schmeiser (1982) .

• If the run length is to be increased to attain a specified
precision, it is suggested to allow both m and k to grow.
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